Perturbed Bernstein-type operators
نویسندگان
چکیده
منابع مشابه
q−BERNSTEIN-SCHURER-KANTOROVICH TYPE OPERATORS
The aim of this paper is to present a Stancu type Kantorovich modification of q−BernsteinSchurer operators introduced by Muraru [22] and modified by Ren and Zeng [29]. Here, we obtain a convergence theorem by using the well known Bohman-Korovkin criterion and find the estimate of the rate of convergence by means of modulus of continuity and Lipschitz function for these operators. Also, we estab...
متن کاملBlending Type Approximation by Bernstein-durrmeyer Type Operators
In this note, we introduce the Durrmeyer variant of Stancu operators that preserve the constant functions depending on non-negative parameters. We give a global approximation theorem in terms of the Ditzian-Totik modulus of smoothness, a Voronovskaja type theorem and a local approximation theorem by means of second order modulus of continuity. Also, we obtain the rate of approximation for absol...
متن کاملOn the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators
In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...
متن کاملUpper Estimates in Direct Inequalities for Bernstein-Type Operators
We obtain explicit upper estimates in direct inequalities with respect to the usual sup-norm distance for Bernstein-type operators. Our approach combines analytical and probabilistic techniques based on representations of the operators in terms of stochastic processes. We illustrate our results by considering some classical families of operators, such as Weierstrass, Sza sz, and Bernstein opera...
متن کاملOn simultaneous approximation for some modified Bernstein-type operators
for n ≥ α, where α, β are integers satisfying α ≥ β ≥ 0 and In ⊆ {0,1,2, . . . ,n} is a certain index set. For α = β = 0, In = {0}, this definition reduces to the BernsteinDurrmeyer operators, which were first studied by Derriennic [3]. Also if α = β = 1, In = {0}, we obtain the recently introduced sequence of Gupta and Maheshwari [4], that is, Mn,1,1(f ,x)≡ Pn(f ,x) which is defined as Pn(f ,x...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis and Mathematical Physics
سال: 2020
ISSN: 1664-2368,1664-235X
DOI: 10.1007/s13324-020-00389-w